Stepwise Induction of Logistic Model Trees
نویسندگان
چکیده
In statistics, logistic regression is a regression model to predict a binomially distributed response variable. Recent research has investigated the opportunity of combining logistic regression with decision tree learners. Following this idea, we propose a novel Logistic Model Tree induction system, SILoRT, which induces trees with two types of nodes: regression nodes, which perform only univariate logistic regression, and splitting nodes, which partition the feature space. The multiple regression model associated with a leaf is then built stepwise by combining univariate logistic regressions along the path from the root to the leaf. Internal regression nodes contribute to the definition of multiple models and have a global effect, while univariate regressions at leaves have only local effects. Experimental results are reported.
منابع مشابه
Stepwise Induction of Model Trees
Regression trees are tree-based models used to solve those prediction problems in which the response variable is numeric. They differ from the better-known classification or decision trees only in that they have a numeric value rather than a class label associated with the leaves. Model trees are an extension of regression trees in the sense that they associate leaves with multivariate linear m...
متن کاملFactors Influencing Drug Injection History among Prisoners: A Comparison between Classification and Regression Trees and Logistic Regression Analysis
Background: Due to the importance of medical studies, researchers of this field should be familiar with various types of statistical analyses to select the most appropriate method based on the characteristics of their data sets. Classification and regression trees (CARTs) can be as complementary to regression models. We compared the performance of a logistic regression model and a CART in predi...
متن کاملTrading-Off Local versus Global Effects of Regression Nodes in Model Trees
Model trees are an extension of regression trees that associate leaves with multiple regression models. In this paper a method for the top-down induction of model trees is presented, namely the Stepwise Model Tree Induction (SMOTI) method. Its main characteristic is the induction of trees with two types of nodes: regression nodes, which perform only straight-line regression, and split nodes, wh...
متن کاملMining Tolerance Regions with Model Trees
Many problems encountered in practice involve the prediction of a continuous attribute associated with an example. This problem, known as regression, requires that samples of past experience with known continuous answers are examined and generalized in a regression model to be used in predicting future examples. Regression algorithms deeply investigated in statistics, machine learning and data ...
متن کاملA logistic radial basis function regression method for discrimination of cover crops in olive orchards
Olive (Olea europaea L.) is the main perennial Spanish crop. Soil management in olive orchards is mainly based on intensive and tillage operations, which have a great relevancy in terms of negative environmental impacts. Due to this reason, the European Union (EU) only subsidizes cropping systems which require the implementation of conservation agro-environmental techniques such as cover crops ...
متن کامل